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ABSTRACT 

The purpose of this study is to evaluate numerical solutions for the hydroelastic behavior of floating 

structures with hinge connections under regular waves based on the frequency domain. In order to model the 

floating structure, we employed a MITC plate element using a mixed formulation, and the fluid-structure 

interface boundary surface is also discretized to solve coupled equations. Two conditions, a stiffness 

parameter and characteristic length, are needed to evaluate the region of hydroelasticity. The experimental 

study is based on measurement of the hydroelastic behavior on a mat-like structure. The measurement is 

focused on heave motion and bending moment. The results from the experiment are presented to evaluate 

numerical solutions related to hydroelastic behavior. 

 

Keywords: very large floating structures, finite element method (FEM), boundary element method (BEM) 

hydroelastic analysis, hinge connection, heave motion, bending moment 
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Chapter 1. Introduction 

Very large floating structures (VLFS) demand new technology for the analysis of their structural 

behavior due to severe ocean environments. A VLFS is a structure that has elastic behavior with the external 

environment, such as waves, currents, and wind load due to a lack of bending stiffness. This phenomenon is 

widely known as hydroelasticity. For many hydroelastic behaviors of a floating structure, heave motion (the 

vertical displacement) and bending moment are the most important quantities. In recent years, VLFS are being 

developed as floating oil storage containers, airports, and bridges, as illustrated in Figure 1.1. 

Since VLFS are huge structures applied in the real world, it is very difficult to construct them as a 

single structure on the ground. Therefore, VLFS are constructed by many combined units that make up the 

structure in the sea. In order to construct VLFS in the sea, the connection type for each unit of the floating 

structure should be considered. The hinge connection is the best option to reduce the bending moment acting 

on the cross section of the structure. Accordingly, many studies have been performed on the hydroelastic 

behavior of floating structures with connection types.  B.W. Kim [5] investigated a floating structure with 

hinge and spring connections using a numerical analysis with the direct method.  S. Fu [16] investigated the 

effect of the hinge connection by adjusting the rotational stiffness of the hinge using a prototype structure 

model. A floating beam model that was divided into auxiliary and main parts was used to investigate the 

optimum connection design for floating structures by M. Riyansyah [17]. 

While many studies have been carried out on VLFS with hinge connections using the numerical 

analysis approach, there has been little research to verify the hydroelastic behavior of floating structures with 

hinge connections. K. Yago [1] conducted an experimental study of the hydroelastic response of a floating 

structure with a large-scale model without hinge connections through a tank test. M. Riyansyah [17] 

experimentally evaluated the hydroelastic response of a floating structure with one hinge connection acting on 

a zero degree incident wave. This study is limited in its capacity to validate other numerical studies, however, 

because only one incident angle and a few wave frequencies were considered. In order to overcome this 

shortcoming, we performed appropriate experiments on the hydroelastic behavior of a floating structure with 

hinge connections to verify the results of a numerical method. Main idea is that floating structures have 

different hydroelastic behavior depending on the number of hinge connections. 

In this study, we first review the mathematical formulation and the numerical procedures to solve the 

hydroelastic problems of floating structures. Next, we demonstrate the experimental conditions and the data 

analysis procedure. Finally, we present the experimental results, which are related with the heave motion and 

bending moment with measuring systems. The experimental results and calculations demonstrate the 
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effectiveness of the hinge connections in reducing the bending moment by proper measurement for the 

floating structure. 

  

  
 

(a) Offshore airport 
 

(b) Floating bridge 

   

 

 
 

(c) Oil storage terminal 

 
Figure 1.1: Applications of Very Large Floating Structures (VLFS) 
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Chapter 2. General theory 

In this chapter, we describe mathematical modeling and formulations of a hydroelastic analysis of 

floating structures. First, we present the physical assumptions, governing equations, and boundary conditions 

for the fluid and structure. Next, final equations are described in variational forms for the finite and boundary 

element methods in the frequency domain. 

 

2.1 Overall description and assumptions 

 

Figure 2.1: Overall description of hydroelastic analysis for a floating structure 

Figure 2.1 provides an overall description of the hydroelastic analysis for a floating structure. The Very 

Large Floating Structure (VLFS) was modeled as a rectangular floating plate model (dimension tBL  ). The 

draft and the water depth are denoted by d and h, respectively. The incident wave, which has small amplitude 

A, was induced to the floating plate with angular frequency   and angle . Note that the draft d was 

calculated under the static equilibrium condition in the rigid body assumption. 

In terms of material properties, the structure was assumed to be a homogeneous, isotropic, and linear 

elastic material with small displacement and strain. The fluid was assumed to be an ideal incompressible, 

inviscid fluid with irrotational flow. The external load was modeled by a regular wave that was moving 

toward the floating plate with a constant angular frequency. 
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2.2 Formulations of the floating structure 

 

 

Figure 2.2: Floating plate structure model 

In the static equilibrium condition, Vt  and St  are the current structure volume and wet surface of 

the floating structure, respectively. Then, the governing equations for body force and surface force are 

 

0



isis

j

ij
UF

x



 in Vt                          (2.1) 

ijij Tn   on St                                (2.2) 

where ij
 

is the stress tensor and s

 

is the structural density. iF , iT , and iU  are the body force 

vector, surface force vector, and displacement vector, respectively. jn  denotes unit normal vectors extending 

outward from the structure domain. 

After integration by parts and applying the divergence theorem, virtual work of the floating structure 

could be obtained by Eq. (2.3). iu  and ij  denote virtual displacement and virtual strain. 
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In matrix form, 
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In a static equilibrium state, the initial stress condition could be neglected as the initial acceleration is equal 

to zero. The applied body force is gravitational force in the vertical direction and surface force applied is 

pressure acting on the wet surface. 
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By applying the initial stress condition and steady state problem to virtual work, the solution could be 

obtained by 
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The final variational formulation of the structure for a steady state condition was obtained as 
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V

T
s ttt 3
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In matrix form, 
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)(xp  is unknown pressure and 3u  is displacement of 3x
 

axis.
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2.3 Formulations of the fluid 

 

Since the fluid was assumed to be an ideal fluid that is invicid, incompressible, and irrotational, 

motions of fluid particles could be described by the velocity potential, which satisfies Laplace’s equation and 

the boundary conditions. Eq. (2.10) is Laplace’s equation for an ideal fluid in a steady state condition. 

02  ,
tie 
 

in fluid domain.                       (2.10) 

From the linear momentum conversation with the above assumptions and additional assumptions of a 

Newtonian, isotropic fluid, we can derive Bernoulli’s equation for the potential fluid: 

0ΦΦ
2

1Φ
3 




gu

ρt w

P
                         (2.11) 

 

Figure 2.3: Schema of the fluid domain  

As illustrated in Figure 2.3, fluid domain is defined by its surfaces: SB (interface between the structure 

and the fluid); SF (free surface); SG (ground surface); and S∞ (surface that envelops fluid domain). 

Eqs. (2.12) to (2.15) describe the boundary conditions. The normal velocity of the structure and the 

fluid are the same on the interface surface, and the body boundary condition on the body surface is then, 

 3
3

ui
x








 on BS

                                
(2.12) 
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We should consider two conditions: the kinematic boundary condition and the dynamic boundary 

condition. The free surface boundary condition is then obtained as 




gx

2

3






 

on FS
                                 

(2.13) 

Given that the bottom does not move, we applied the kinematic condition. 

 

0
3






x



 

on GS

                                   

(2.14) 

The radiated energy that the diffraction wave and the wave cause by the movements of the structure will move 

to infinity. This condition is called the Sommerfeld radiation condition: 

   
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on S                   (2.15) 

g is the gravitational acceleration and k is the wave number, respectively. R is the distance of the spatial point 

x and source point  . Because the floating structure was a thin structure compared with the water depth, we 

assumed the source point and spatial point are identically located in a free surface. 

Eq. (2.16) is the incident potential I for a finite depth. 

)sincos(
cosh

)(cosh
21

3 


 xxe
kh

hxkgA
i ik

I 
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    for the finite depth        (2.16) 

The above equations in the fluid domain were formulated as a boundary integral equation using the 

Green’s function. Kim [7] conducted derivation of the relate formulations. The boundary integral equation on 

the body surface of the floating plate is 

)();();()()(4)(4 3
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                (2.17) 

Eq. (2.17) is the boundary integral equation on the body surface of the floating structure and );( xG  is 

a free surface Green’s function for water of finite depth that satisfies the boundary conditions. In infinite and 

finite depths with the source potential, the Green’s function was defined by Wehausen and Laitone [19]. In 

order to overcome the complexities of integration of the Green’s function, an efficient algorithm developed by 

Newmann [20] was adopted. Therefore, the final variational formulation of the fluid for the steady state 

condition was obtained as Eq. (2.18). 

 

)()()()()();()()(
4

1

)()()(
1

)()()(

2

3

xSdxxP
g

ixSdSdxGPxP
g

xSdxPxP
g

xSdxuxP

B
S

I
T

B
S

B
S

T

w

B
S

T

w
B

S

T

BB B

BB

 

























      (2.18) 



 

- 8 - 

w  is the fluid density. The actual volume and surface of the structure occupied at time t change periodically 

from the static equilibrium state; however, because of the assumption of small displacements, the variations of 

the volume and surface are negligible. 
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2.4 Dimensionless parameters 

 

In the definition of problems, dimensionless parameters are usually used for generalization of 

parameters. In this paper, we suggested three parameters: stiffness parameter S, aspect ratio length / breadth (L 

/ B), and the dimensionless wave length α. The significance of hydroelasticity is related to a stiffness 

parameter S proposed by Newmman [11], which corresponds physically to the ratio between the internal force 

due to bending of the modules and the corresponding hydrostatic restoring force. Newmman concluded that 

the important regime for significant hydroelastic effects is 26 1010   S . The parameters about the 

structure and fluid contain specific information about the bending stiffness and geometry and incident wave 

travelling towards the structure, in S, the aspect ratio, and α, respectively. Eq. (2.19) describes the physical 

meaning of the equation. 

LB

L
ratioAspect

gL

EI
S

w





 ,,

5
                         (2.19) 

EI is the bending stiffness of the structure, ck  the spring constant of hydroelastic restoring force, and λ is the 

wave length. 
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Chapter 3. Numerical methods 

 

In this chapter, we describe methods for solving the equations of the fluid and structure parts into plate 

structures. With the plate structure in the structural and fluid domains, we applied the finite element method 

(FEM) and boundary element method, respectively. The static condensation method was employed in 

modeling the hinge connection in the structural domain. Finally, the coupled equation was transformed to a 

matrix form with relation to structural displacement and fluid pressure. 

 

3.1 MITC4 plate element                                                                                                                                                                                       

 

Figure 3.1: The geometry of a plate element 

The plate formulation is a special case of the general shell element formulation and is based on the 

theory of plates with transverse shear deformations. This theory, developed by E. Reissner [24] and R.D. 

Mindlin [25], uses the assumption that particles of the plate originally on a straight line that is normal to the 

un-deformed middle surface remain on a straight line during deformation, but this line is not necessarily 

normal to the deformed middle surface. With this assumption, the displacement components of point 

coordinates 1x , 2x , and 3x  are, 

















































































4

1

3

4

1

3

4

1

3

3

3

3

3

2

1

1

2

2

1

),(

),(

),(

i

ii

i

i
xi

i

i
xi

x

x

uh

hx

hx

yxu

yxx

yxx

u

u

u









u                            (3.1) 

3u  is the transverse displacement, 
1x  and 

2x are the rotations normal to the undeformed middle surface 

in 1x , 3x  and 2x , 3x . In the pure displacement discretization, 
1x  and 

2x are transformed into 
2x , 

1x . The bending strains vary linearly through the plate thickness and are given by the curvatures of the plate. 
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With the assumption that stress in the direction of thickness is zero, for an isotropic material, the state of 

bending strain and stress are 
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MITC4 elements proposed by Bathe, K.J. [1] are utilized in the plate formulation. A contravariant base 

vector was used in the formulation and its relation with a covariant base vector is explained through a 

kronecker delta function.  
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The essence of the MITC4 formulation lies in the separate interpolation of the transverse displacement 

(section rotation) and of the transverse shear strains. As described earlier, the displacement and rotations are 

interpolated as usual, but for the transverse shear strains, the covariant components measured in the natural 

coordinate system are interpolated. The transverse shear strains will be as follows 
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3.2 Static condensation method 

 

In the finite element of the plate structure, the static condensation method (Ref. [16]) was applied to 

model the hinge connection. Static condensation is employed to reduce the number of the element’s degrees of 

freedom and thus, in effect, to perform part of the solution of the total finite element system equilibrium 

equations prior to assembling the structure matrices of the structural stiffness K and force vectors R. In the 

plate element, rotation in the x or y direction will be condensed out, depending on the location and axis of the 

hinge connection. The condensed elements connected in a row in the floating structure could rotate to the 

longitudinal or breadth direction. 

In order to establish equations used in the static condensation, it was assumed that the stiffness matrix 

and corresponding displacement and force vectors of the element under consideration are partitioned into the 

form,  
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where Ua is the vector displacement to be retained and Uc is the vector displacement to be condensed out, 

respectively. Using the second equation in the matrix, we can obtain, 

)(1
acacccc UKRKU                               (3.7) 

This relation is used in the first equation to substitute Uc, and then the condensed equation can be 

obtained and Uc will disappear from the stiffness matrix. Later, the information of 1
ccK  and caK  for each 

element through condensation will be used for re-condensation for calculation of bending moments.  

cccacaacaccacaa RKKRUKKKK
11 )(                       (3.8) 

Using the static condensation method explained before, the implementation in the plate structure will 

start from rearrangement of the stiffness matrix according to the form of the condensation matrix. The process 

then follows the condensation process. The process is finished by re-assembly of the stiffness matrix. For the 

plate problem, for each element, static condensation is performed twice, because two nodes at the side of 

element are needed to define the hinge connection. 

The advantage of using static condensation on the element level is that the order of the system 

matrices is reduced, which may mean that use of back-up storage is prevented. In addition, if subsequent 

elements are identical, the stiffness matrix of only the first element needs to be derived, and performing static 

condensation on the element internal degrees of freedom also reduces the computational effort required. 
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3.3 Boundary elements 

 

Figure 3.2: The geometry of a boundary element  

The boundary elements method (BEM) was applied for the fluid by dividing the wet surface interface 

of the fluid with the structure into elements of four nodes. The boundary surface is the mid-surface of the plate 

structure in the equilibrium state because the plate thickness is very small, compared to its length and width. 

This method was applied in the coupled equations. Then, the interpolated pressure on the middle surface for 

four nodes boundary elements is 
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3.4 Discretization of the coupled equations  

 

The coupled equations were transformed to matrices form to apply MITC4 plate elements and 

boundary elements. The structural volume was divided into N elements and body boundary surface into M 

elements. MITC4 plate elements are then applied to Eq.(2.9) as follows:  
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Boundary elements are applied to Eq.(2.19) as follows: 
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The variational formulations, Eq. (3.10) and Eq. (3.11), were transformed into the final matrix forms 

by the finite and boundary elements discretization as 
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MS , KS , and intS are structural mass, stiffness, and interface matrices. MF , KF , and intF are fluid 

mass, stiffness, and interface matrices. IF̂

 

is the external load vector due to the incident wave. û and P̂ are 

the unknown displacement vector and pressure vector. If we divide the structural volume into N elements and 

the body surface into M elements, û , P̂ , and other matrices are defined by 
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3.5 Treatment of singularity 

 

The Green function in the fluid equation has a singular value when the distance between the spatial 

point and the source point is close or equal to zero. The method to solve the singularity is focused on 

integration of the Green function. Singular components for the green function should be separated from its 

regular components. The integration of regular components of the Green function is solved by Gauss-

Legendre quadrature. In order to understand this procedure; see Ref [7]. Kim [7] derived a method to deal 

with the singularities. 
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3.6 Bending moment calculation 

 

Figure 3.3: Bending stresses in plate element 

The bending moments of M11, M22, and M12 are stress resultants with dimensions of moment per unit 

length or force, that is, force. For example, Nm/m. The moments are calculated by integrating the elementary 

stress couples through the thickness:  
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The integral relation between bending moments and stresses was solved by applying a numerical 

calculation. Displacement results of each element are used to obtain bending moments of each element in the 

plate structure. The overall result of node on the plate elements are the average value of bending moments at 

one node from four different elements. 
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Another approach is an analytical method to calculate bending moments of the plate structure. This 

calculation method yields the integral equation of the previous bending moment equation. The results between 

the numerical and analytical methods showed no differences in bending moment values. 
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Chapter 4. Experiment 

 

4.1 Experimental environment  

 

The experiment was carried out in the ocean research basin of the Division of Ocean Engineering at 

KAIST. Figure 4.1 shows the ocean research basin and Table 4.1 summarizes the experimental conditions. All 

experiments were conducted in calm water conditions. A plunge-type wave maker is an ideal tool for 

generating a linear regular wave. A beach-type wave absorber is a tool for efficiently absorbing the wave. 

However, for pursuing accurate data, we selected data that did not affect the reflection wave from the wave 

absorber. The floating structures were subjected to incident waves with four different incident wave angles (0, 

30, 60, 90 deg.) and five different dimensionless wave lengths (α, 0.1 ~ 1.0) in regular waves. Figure 4.2 

illustrates the experimental setup in the ocean research basin. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Ocean research basin 

Wave condition Regular and linear wave  

Incident wave angle 0, 30, 60, 90° 

Incident wave amplitude (m) 0.005, 0.01 

α (λ/ L) 0.1 ~ 1.0 

Water depth (m) 1.5 

Table 4.1: The experimental conditions 

3D water basin 

Wave maker (Plunge type) 

Wave absorber (Beach type) 
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4.2 Experimental model 

 

The experimental model for the floating structure is a mat-like structure of length 3m, breadth 0.6m, 

and thickness 0.04m. Table 4.2 lists the details of the floating structure model. In the floating structure, two 

materials were fabricated along the thickness direction, one of polycarbonate, and the other of polyethylene 

foam, which was used to buoy the structure. Figure 4.3 illustrates the structure of the composite plate. At four 

edge parts, the structure was moored by string at the basin surface upward. The string could remove the drift 

motion efficiently but was not expected to restrain heave motion. Therefore, this condition could assume a 

free state of the floating structure.  

 

 

 

 

 

 

Figure 4.2: Scheme of experimental setup 

Length, L (m) 3 

Breadth, B (m) 0.6 

Thickness, t (m) 0.04 

Draft, d (m) 0.011 

Bending stiffness, EI ( 2Nm ) 30.3845 

Table 4.2: Information of floating structure model 
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Figure 4.3: Section of the model 

 

The hinge connection is a free rotation connection, which means that the rotational stiffness is equal to 

zero. The floating structure consists of hinge connections at one side of the structure. There were three cases: 

no hinge, one hinge connection, and two hinge connections. Figure 4.4 illustrates the position of the hinge 

connections. 

 

Figure 4.4: The position of hinge connection 
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In order to calculate the bending stiffness EI, a material test was conducted, as illustrated in Figure 4.5, 

which shows a cantilever beam under its own weight. This test was repeated four times with different lengths 

to check the repeatability of the calculated EI. The vertical deflection was measured at the free end of the 

cantilever to calculate EI from Eq. (4.1), which describes the deflection relation with the distributed load. 

EI

qL
w

8

4

                                         (4.1) 

 

 

Figure 4.5: Bending test for measuring bending stiffness EI of a floating structure model 

w is the measured vertical deflection at the free end of the cantilever and q is the distributed load that was 

changed from its own weight. Table 4.3 summarizes the experimental results of four cases where the EI 

values converged to a single value.  

 Case 1 Case 2 Case 3 Case 4 Mean value 

L ( ) 0.375 0.5 0.6 0.7  

w ( ) 0.00453 0.01464 0.0306 0.567  

EI (N  ) 31.019 30.335 30.095 30.089 30.3845 

Table 4.3: Experimental results of bending stiffness EI 
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4.3 The conditions of hydroelasticity 

 

The structural model should be checked with respect to whether it is in a condition of hydroelastic 

behavior. Two conditions, the stiffness parameter S and characteristic length cλ , are utilized to evaluate 

hydroelasticity. The stiffness parameter S is described in chapter 2.4. 

As a rational measure to distinguish rigid body motion and hydroelastic behavior in terms of the global 

response of the floating structure, a characteristic length cλ  has been proposed by Suzuki [21]. 

gBk
k

EI
wc

c
c  













 ,2

4

1

                              (4.2) 

ck  is the spring constant of the hydrostatic restoring force. cλ corresponds to the length of the locally 

deflected region by a static concentrated load, as illustrated in Figure 4.6. This indicates that the influence of 

an applied load on the elastic deformation is limited within the region of the length cλ . The relationship 

between the wave length and the characteristic length is another important factor on the global response of 

floating structures. If the wave length is smaller than the characteristic length, the wave exciting forces 

alternate in the range of the length cλ  and the load effects cancel each other, resulting in a smaller global 

response. These characteristics of the global response with respect to the characteristic length are summarized 

in Figure 4.7. 

 

Figure 4.6: Global response under a static load 
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Figure 4.7: Mapping of global response of floating structures 

In order to establish S and cλ  in accordance with the region of hydroelasticity, EI is the most important 

physical quantity. Table 4.5 demonstrate that both values satisfied the conditions of hydroelasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stiffness parameter (S) 
Range 26 1010   S  

Model S = 5102635.1   

Characteristic length ( cλ ) 
Range L > cλ  

Model cλ = 1.6805 

Table 4.4: Values of stiffness parameter and characteristic length in structural model 
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4.4 Linear wave theory 

 

In one of the important assumptions, the incident wave should be a linear wave that satisfies linear 

wave theory in that the derived wave height is small compared with the water depth and wave length. In order 

to be applicable, the wave height, wavelength, and the water depth in linear wave theory have to meet certain 

condition. Komar [22] suggested the ranges of validity of various wave theories in terms of a function of wave 

steepness H / h and relative water depth h / λ. In the construction of this graph, the widest possible regions 

were given for simpler wave theories. 

The relative water depth h / λ determined the water depth condition. Generally, if h / λ is more than 

0.25, it designates a deep water condition and less than 0.05, a shallow water condition. Wave steepness 

related to wave height determines the wave property in various wave theories. From α = 0.1 to 1.0, all 

dimensionless wave lengths are satisfied with Figure 4.8. 

 

 

Figure 4.8: Ranges of validity of various wave theories as a function of H / h and h / λ 
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4.5 Measuring methods 

 

The equipment for tests consisted of three major elements: a motion capture system for heave motion, 

a strain gauge for bending moment, and a wave probe for wave frequency and amplitude. In every experiment, 

we needed to measure the incident wave amplitude. In order to measure the wave frequency and amplitude at 

the front side of the floating structure, one wave probe was installed at the front side, as illustrated in Figure 

4.2. One wave probe was positioned at the free water surface, a distance of about 1 meter from the front part 

of the floating structure. The wave probes measured the wave elevation with respect to time at their locations.   

In order to measure the heave motion, we employed a Vicon motion capture system with optical 

markers. The Vicon motion capture system consists of three parts: a motion camera, main system, and optical 

marker. Four cameras could measure the heave motion of the marker without missing data or a dead angle. 

Moreover, the resolution was one micrometer, thus providing very small error. A total of 24 markers were 

attached to each of the portside, center, and starboard on top of the floating structure with no hinge 

connection, and then 3markers were added when one hinge connection was added. The positions of the 

markers are shown in Figure 4.10. 

 

 

Figure 4.9: Vicon motion capture system 

 

Camera Optical marker Layout of cameras 

Specification of camera 
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Figure 4.10: The measuring position of heave motion 

For measuring strain, we utilized a strain gauge with a DAQ system. The strain gauge could measure 

the strain on the floating structure acting on the incident wave with various angles and frequencies. Three 

axial element strain rosettes were employed to measure the bending moment in the direction of 0, 45, and 90° 

on the deck points. Therefore, we measured three kinds of strain: 11 , 22 , and 12 . The positions of the 

strain gauges are shown in Figure 4.12. 

 

 

Figure 4.11: Three elements strain rosette 
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Figure 4.12: The measuring position of strain gauge 
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Chapter 5. Results 

 

In this chapter, we compare the experimental results and conduct a numerical analysis of the heave 

motion and bending moment. The hydroleastic behavior of a floating structure depends on properties, such as 

bending stiffness, aspect ratio, wave frequency, and amplitude. The floating structure was fixed by the 

bending stiffness and the aspect ratio. The floating structure without a hinge connection was tested first, then 

we conducted experiment with the hinge connected floating structure via same procedure. 

 

5.1 Heave motion 

Hydroelastic behaviors have a variety of motions such as surge, sway, heave, roll, pitch, and yaw. 

Among those, heave motion is the most important for floating structures in the ocean environment. Therefore, 

we measured heave motion at the portside, center, and starboard of the floating structure. From Figures 5.2 to 

5.13, we provide a comparison of the experimental results and numerical analysis of the heave motion’s 

response amplitude operator (RAO) value, that is, the heave motion divided by incident wave amplitude 

( Au /3 ) at α = 0.1 ~ 1.0 and 0 ~ 90°. The X axis is the position divided by the structural length (x / L). The 

figures are consistent with the overall trend of the experimental and numerical results. Therefore, the 

experimental results are in accordance with the numerical analysis results.  

By adding a hinge connection to the floating structures, heave motion is slightly increased. In order to 

decrease heave motion, the floating structure should be equipped with an anti-heaving device that is proved to 

effectively decrease heave motion. K. Takagi [18] investigated the effectiveness of an anti-heaving device 

composed of a box-shaped body attached to an edge of a VLFS with a theoretical method and experiments.  
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Figure 5.1: Distribution of heave motion at α = 0.6 
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θ = 0° 

 

Figure 5.2: Longitudinal distributions of heave motion (No hinge connection at θ = 0°) 
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θ = 30° 

 

Figure 5.3: Longitudinal distributions of heave motion (No hinge connection at θ = 30°) 
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θ = 60° 

 

Figure 5.4: Longitudinal distributions of heave motion (No hinge connection at θ = 60°) 
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θ = 90° 

 

Figure 5.5: Longitudinal distributions of heave motion (No hinge connection at θ = 90°) 
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θ = 0° 

 

Figure 5.6: Longitudinal distributions of heave motion (One hinge connection at θ = 0°) 
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θ = 30° 

 

Figure 5.7: Longitudinal distributions of heave motion (One hinge connection at θ = 30°) 
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θ = 60° 

 

Figure 5.8: Longitudinal distributions of heave motion (One hinge connection at θ = 60°) 
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θ = 90° 

 

Figure 5.9: Longitudinal distributions of heave motion (One hinge connection at θ = 90°) 
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θ = 0° 

 

Figure 5.10: Longitudinal distributions of heave motion (Two hinge connection at θ = 0°) 
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θ = 30° 

 

Figure 5.11: Longitudinal distributions of heave motion (Two hinge connection at θ = 30°) 
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θ = 60° 

 

Figure 5.12: Longitudinal distributions of heave motion (Two hinge connection at θ = 60°) 
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θ = 90° 

 

Figure 5.13: Longitudinal distributions of heave motion (Two hinge connection at θ = 90°) 
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5.2 Bending moment 

The main problem is reducing bending moment in the floating structure, since it is related to the life of 

the structure. We utilized strain gauges for measuring the bending moment. Eq. (5.1) illustrates the 

relationship between strain and bending moment. Three axial element strain rosettes were employed to 

measure the bending moment in the directions of 0, 45, and 90° on the deck points. Hence, we measured three 

kinds of strain, 11 , 22 , and 12 . Also, curvature values ij  can be calculated by the strain values ij .  
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In the numerical analysis, we assumed a neutral axis was positioned at the middle of the section, which 

corresponds with 2/t . However, the neutral axis was positioned at the middle of the polycarbonate plate with 

the actual physical phenomenon of bending behavior, because polyethylene foam has much smaller bending 

stiffness than the polycarbonate plate. Therefore, we calculated the curvatures 11 , 22  as measured strain 

values and calculated the length of 3x . Figure 5.14 illustrates the position of the actual neutral axis. Nx 3

denotes the length from the bottom to the neutral axis. 

Figures 5.16 to 5.19 present a comparison of the experimental results and numerical analysis of the bending 

moment’s response amplitude operator (RAO) value in 11M  at α = 0.2 ~ 1.0 and 0 ~ 90°. 

 

Figure 5.14: The position of neutral axis 



 

- 44 - 

 

 

 

 

 

 

 

 

Figure 5.15: Distribution of bending moment at α = 0.6 
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θ = 0° θ = 30° 

 

Figure 5.16: Longitudinal distributions of bending moment (One hinge connection at θ = 0, 30°) 
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θ = 60° θ = 90° 

 

Figure 5.17: Longitudinal distributions of bending moment (One hinge connection at θ = 60, 90°) 
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θ = 0° θ = 30° 

 

Figure 5.18: Longitudinal distributions of bending moment (Two hinge connection at θ = 0, 30°) 
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θ = 60° θ = 90° 

 

Figure 5.19: Longitudinal distributions of bending moment (Two hinge connection at θ = 60, 90°) 
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Chapter 6. Conclusion 

 

We have investigated the hydroelastic behavior of a floating structure under regular waves in the 

frequency domain with numerical and experimental studies. In the real world, it is necessary to consider the 

connection type used with floating structures due to the severe ocean environment. The hinge connection 

method is well known for reducing the bending moment acting on the cross section of these structures.  

Numerical and experimental studies of the hydroelastic behavior of floating structures with hinge 

connections located at one side in regular waves was carried out in this study. The evaluation of hydroelastic 

behavior of floating structures focused on heave motion and bending moment. These behaviors depended on 

the incident wave frequency and angle. In the study of hydroelastic behavior, we described relevant 

mathematical formulations and the numerical procedure that we employed. With appropriate assumptions, we 

derived coupled equations in terms of the structural and fluid components for the hydroelastic analysis. In 

order to solve these equations, we employed the finite element method for the structural part and the boundary 

element method for the fluid part. 

For validation of the numerical procedure, the floating structures were tested with three other proposed 

types, no hinge, one hinge connection, and two hinge connections. The numerical results were initially 

validated against the experimental results and subsequently used to conduct studies to investigate the 

effectiveness of hinge connections. Based on the results from the experiment and numerical analysis, the 

hinge connections reduced the bending moment of the floating structure. We expect that these experimental 

results may help to evaluate numerical analyses in relate research. Also, these results can be utilized in the 

design of revolutionary very large floating structures in the future.  
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Summary 

부유식 구조물의 유탄성 거동에 관한 수치적 및 실험적 연구 

       

본 연구의 목적은 수치적 및 실험적 연구로써 주파수 영역 내의 규칙 표면파의 작용하에 

부유식 평판 구조물의 유탄성 거동을 해석하는 것이다. 구조물의 유탄성 해석을 위하여 판 

구조물로 모델링하여 거동을 살펴본다. 먼저 연구에 관한 수학적 모델을 제시 한 후 

수치해석기법으로 구조물의 유탄성 거동, 즉 수직 변위와 굽힘 모멘트를 계산한다. 이러한 

수치적 연구를 검증 하기 위해 평판 모델로써 3 차원 수조내에 수치적 연구와 동일한 조건으로 

유탄성 실험을 수행한다. 실험 결과로써 다른 유탄성 관련 연구를 검증 할수 있는 하나의 

기준을 제시한다.  

 

핵심어: 부유식 구조물, 유한요소법, 경계요소법, 힌지연결, 수직변위, 굽힘모멘트 
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